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Abstract. We calculate the spectrum of a quantum Hamiltonian which is in the universality 
class of the Reggeon field theory and directed percolation. We find that its low-lying states 
follow a self-similarity close to the one encountered in the exactly solvable transverse XY 
model. The spectrum can, in the finite-size scaling limit, approximately be described by 
excitations with a dispersion relation k s  on the lattice instead of the k 2  behaviour of the 
transverse X Y  model. 

1. Introduction 

For models having a conformal invariant critical point many new properties have been 
discovered in the last few years [ 1,2]. Among them it was established that the spectrum 
of their transfer matrix is composed of regularly spaced ‘towers’ of eigenvalues each 
coming from a ‘primary’ operator and described by the irreducible representations of 
the Virasoro algebra. This result which was first predicted theoretically, proved to be 
an excellent guideline [3] to analyse spectra and find the dimensions of the primary 
operators. 

In directed models the rotational and therefore conformal invariance is broken. 
Examples are the chiral Potts model [4,5], directed percolation [6] and various other 
models [7-lo]. Only in special cases, like line defects [ l l ]  some results concerning 
the conformal spectrum-generating algebra similar to those found for rotationally 
invariant systems can be retrieved. There exist a few results for the form of the 
correlation functions for dynamical critical phenomena [ 121 but a more general theory 
for directed system is still lacking. 

The aim of this paper is to investigate the spectra of directed systems. We want to 
compare the exactly calculable spectrum of a directed Hamiltonian [7] to the low-lying 
states of directed percolation obtained using numerical techniques. Our hope is to 
detect common features that could help understanding of the structure of these spectra 
more generally. 

In the following section we will discuss the models and sketch the methods used. 
In section 3 we present our results for the critical exponents and coupling constants 
obtained through finite-size scaling. Section 4 is devoted to the discussion and com- 
parison of the spectra and in section 5 we conclude. 

2. The models 

Directed percolation has been used, for instance, to describe branched structures found 
in intermittency [ 131 or to describe the appearance of facets of growing surfaces [ 141. 
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Much theoretical work has been done for this model (see, e.g. [6]). It has been shown 
[15], that it is in the same universality class as the Reggeon field theory (IIFT) which 
made it possible to use results from E expansions. The d-dimensional R F r  has been 
mapped to a ( d  - 1)-dimensional quantum Hamiltonian [16,17] which for d = 2 is: 

with g = 1, where uj are the Pauli matrices on site j and t acts as a temperature. The 
Hamiltonian H is non-Hermitian, reflecting the directed nature of the model. The 
correspondence between the RFT and H is given by taking the extreme anisotropic 
limit T + 0 of the transfer matrix T = exp(-.rh) of the RFT. For a recent review on this 
extreme anisotropic or Hamiltonian limit see [3]. 

Although H has no obvious global symmetry, there is a ‘quasi-symmetry’ 
operator U 

N u = n  a; 
j = l  

which takes H into its adjoint UHUt=  Hi which means that the eigenvalues of H 
are either real or occur in complex conjugate pairs. As we shall see below, at least for 
the values of t considered here, the imaginary parts of the eigenvalues seem to vanish 
in the limit N + M. Thus, considering the real parts of the eigenvalues only, it is sensible 
to speak of the ground state energy and excited states. The ground state energy is given 
by (if t 2 2) 

In the conventional language of directed percolation this translates into the fact that 
the largest eigenvalue of the transfer matrix is unity [18]. 

At the critical temperature t ,  the gap r = El -Eo between the ground state Eo and 
the first excited state E, goes to zero as 

(4) 611’ = r = It - t,l y l ~  6;’ = It - t,l y ~ .  

51, is the correlation length measured in the single anisotropic direction and t1 is the 
correlation length in the other d - 1 directions. In 1 + 1 dimensions t ,  - 2.606 has been 
determined using series expansions [ 191 and the exponents vL - 1.10 and vll - 1.74 are 
known from various methods as seen in table 1. 

Table 1. Critical exponents of two-dimensional directed percolation. 

VL 8 Reference 

1.101 (3) 1.5807 (10) this paper 
1.0969 (3) 1.5807 (3) P O I  
1.104 (9) 1.572 (1) ~191 
1.094(1) 1.581 (2) [I81 
1.068 (10) 1.58 (2) [211 
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If one considers the Hamiltonian of (1) on a finite chain of N sites at t ,  the 
correlation length does not grow proportional to N as it does for rotationally invariant 
systems but fulfils, due to the directedness of the model, a relation [20] 

511 - NO. ( 5 )  

The new 'dynamic' exponent e which is often also expressed as e = vi,/ v, or as e = 2/ z 
[15,19] is numerically 8 - 1.58 in 1 + 1 dimensions (see table 1). 

The case g = 0 in (1) gives the Hamiltonian of the transverse XY model (TXY) 
which in 1 + 1 dimensions can be solved exactly through a Jordan-Wigner transforma- 
tion [ 7 ] .  The resulting free fermion theory is 

where A, = It - 2 cos K I  and K takes the values K = mrr/ N where m is an odd (even) 
positive integer for the states made out of an even (odd) number of fermionic excitations. 
At the critical point t , (g = 0) = 2, one has a quadratic dispersion relation A, - K *  as 
opposed to the linear relation found for the conformally invariant Ising model. Various 
other properties of this model have been calculated analytically [21,22] and the 
finite-size scaling at its critical point has been studied [23]. In solid state theory the 
TXY model is widely known as the tight-binding model and is used, for example, to 
describe certain types of metal-insulator transitions [24]. It was also used to describe 
some regions in the phase diagram of the chiral Potts models [25]. 

3. Results from finite-size scaling 

We have diagonalised the Hamiltonian of (1) for g = 1 on finite, closed chains of length 
N with periodic boundary conditions. Then the translation operator has the eigenvalues 
exp(2rr iq /N) ,  where q corresponds to the discrete momentum and takes the values 
0 ,1 , .  . . , N - 1 (mod N). How these momenta are built into the transfer matrix as a 
phase shift and how the translational symmetry is exploited to reduce the size of the 
matrix is explained in detail in the literature [ 3 ] .  

The critical temperature and the exponents are extracted from the gaps I', of the 
finite chains for q = 0 using finite-size scaling techniques [20]. In particular we use the 
relations 

to obtain from the first equality, t ,  and from the second equality the exponent 8 by 
considering various triplets of system sizes N - 1, N and N +  1. Through [20] 

1 
VI 

t = +( z,,, + 2,) = - - e (9) 

we obtain vi where the derivatives are taken at t = t c , ,  solving (7). 
Numerically we solve (7) by calculating, for q = 0, the gap r N  at various tem- 

peratures close to t ,  for different chain lengths N and determining the intersections 
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Table 2. Finite-size values for the critical point, and the critical exponents. vL is obtained 
by (9). The last line contains the estimates for N + CO as obtained from the BST extrapolation 
algorithm [28] and the numbers in parentheses give the estimated error in the last digit(s). 

sizes *c e f 
~ 

2,3 ,4  2.615 75 1.475 80 -0.765 73 
3,495 2.622 61 1.457 10 -0.721 64 
4,5,6 2.620 43 1.464 44 -0.706 33 
5 ,6 ,7  2.617 73 1.475 42 -0.699 18 
6 ,7 ,8  2.615 53 1.485 89 -0.695 18 
7,839 2.613 84 1.495 08 -0.692 65 
8,9,10 2.612 55 1.502 98 -0.690 89 
9,10, 11 2.611 55 1.509 74 -0.689 58 
lO, l l ,  12 2.610 18 1.515 56 -0.688 54 
11, 12, 13 2.610 16 1.520 59 -0.687 69 
12, 13,14 2.609 66 1.524 91 -0.686 96 
13, 14, 15 2.609 25 1.528 81 -0.686 33 
14, 15, 16 2.608 92 1.532 19 -0.685 77 
cc) 2.606 40 (7) 1.5807 (10) -0.6728 (25) 

of the curves using interpolation techniques. In table 2, we give the finite-size data 
obtained for t,, 8 and 5. The extrapolation towards the N+co limit was done using 
the BST extrapolation algorithm described in [26]. Detailed reviews on extrapolation 
techniques are given in [27,28]. We find for the critical point 

t, = 2.606 40 f 0.000 07 (10) 
which is in good agreement with that t, = 2.606 28(4) found previously [ 191 from series 
expansions. For the exponents we obtain: 

e = 1.5807 (io) and VI = 1.101 (3). (11) 
The effective correction-to-scaling exponent is w = 1.1 zk0.1. As can be seen from table 
1 our value for 8 is in excellent agreement with the most accurate determination so 
far [29]; for vL our error bars are unfortunately rather large. Since we used a different 
method than in [ 191 the agreement of our exponents with that of directed percolation 
reconfirms that the quantum Hamiltonian of (1) and directed percolation are in the 
same universality class. 

4. Discussion of the spectrum 

Before describing our results for the spectrum, let us first consider the convergence of 
the finite-size data. We are interested in the amplitudes Ai of the energy gaps r i  = Ei - Eo 

Ai = N e r i .  

In figure 1, we give as an example the data for the case q = O .  We note that an 
extrapolation in 1/ N works rather well. However, in spite of the relatively large lattices 
with up to seventeen sites available, we see that the finite-size data Ai,,, themselves 
are still quite far from their values in the n + 00 limit, so that some extrapolation is 
always necessary. Since our values for Ei are very precise (a variation of t, within its 
error bars only affords the fourth decimal place of the E i ) ,  it is also possible to use 
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Figure 1. Amplitude spectrum A , ( N )  of the quantum Hamiltonian of (1) for g = 1 and 
q = 0 for a finite chain of length N plotted against N-'. The intercept gives the spectrum 
in the thermodynamic limit. For complex conjugate pairs (crosses) we show the real part, 
while real eigenvalues are shown as dots. 

more sophisticated extrapolation techniques, like the ratio method, the BST algorithm 
or others [27,28]. Similar plots were obtained for the case q f 0 where lattices up to 
N = 15 were used. Note that when calculating the Ai from (12), the amplitude spectrum 
does depend on the estimated value of the exponent 8. We have also tried to obtain 
the Ai directly, without having to know 0, from the relation 

(13) 
In T i ( N +  1) In T i ( N )  

l n ( N + l )  1 n N  
= In Ai - 

but the finite-size estimates obtained this way show no clear convergence with N. 
As can be seen from figure 1 some of the levels split up into two levels after a 

certain size is reached. This is because for small sizes these eigenvalues are in fact a 
pair of complex conjugate numbers of which we just plot the real part. In some cases 
we even find complex conjugate pairs for the largest systems considered. We believe 
that these levels might be just nearly degenerate and that the split-up will occur at 
sizes much larger than we can treat numerically or that the imaginary parts vanish 
when N -* CO leaving a doubly degenerate real-valued energy level. 

In figure 2(a)  we show the resulting extrapolated spectrum for various values of 
q. The numerical accuracy strongly decreases with increasing energy so that the highest 
energy levels in figure 2(a)  have an uncertainty of about 20%. Some levels are shown 
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Figure 2. Low-lying part of the amplitude spectrum A, at t, for different momenta q of 
( a )  the quantum Hamiltonian of directed percolation, i.e. g = 1 in ( l ) ,  and ( b )  the transverse 
XY model, i.e. g = O  in (1). The crosses (circles) are even (odd) eigenvalues and the full 
(broken) lines are guides to the eye to visualise the self-similarity of the even (odd) sector. 
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as doubly degenerate, these are complex conjugate pairs for which only the real part 
is shown. 

We oppose our spectrum to the exactly calculable spectrum of the TXY model at 
its critical point t ,  = 2 shown in figure 2( 6). The spectrum is obtained by the superposi- 
tion of the one-particle excitations of (6) with discrete one-particle momenta k = m / 2  
and the sum of the k’s will give the total discrete momentum q. Since the TXY model 
has a global spin-flip symmetry the spectrum decomposes in an even sector (crosses) 
and an odd sector (circles). We see that the spectrum of each sector has a self-similar 
structure. 

The odd sector is made out of small rhombi that come from excitations (particles) 
of momentum $1 and/or -1 of a given level. These rhombi are placed within larger 
rhombi stemming from particles of momenta =t2 which themselves lie in larger rhombi 
coming from =t3 momenta particles and so on. We show the first generations of this 
hierarchical structure by broken lines in figure 2 ( b ) .  

The even sector consists of two types of pairs, the horizontal and the vertical ones 
that are due to =t 4 excitations. These pairs lie on parabolas of the form ( k  + i)2 + (;)* 
having their minimas at energies (k’+:)’ where k and k‘ are positive integers and k‘ 
is odd. On each parabola each level k is itself the starting point of a parabola of ( k  - 1) 
levels. These secondary parabolas themselves have side-branching parabolas and a 
hierarchical tree-like structure of parabolas is obtained. This self-similar structure can 
also be explained by the superposition of non-interacting particles with a quadratic 
dispersion relation which is not surprising in view of (6). At higher energies one obtains 
in addition other complex self-similar structures due to more complicated combinations 
of particles but we only want to focus here on the low-lying levels. 

Considering now again the spectrum of directed percolation we see in figure 2 ( a )  
that simply by analogy with the spectrum of figure 2( b )  it is possible to identify ‘even’ 
and ‘odd’ sectors. This is surprising since there is no apparent global symmetry in 
directed percolation. Continuing the comparison of the two spectra one can also 
recognise in figure 2( a )  remnants of the self-similarity that we discussed for the spectrum 
of the TXY model. The rhombi in the ‘odd’ sector are no longer equilateral which 
can be interpreted in the particle picture of the TXY model by an interaction between 
the particles: two excitations can either from a bonding or an anti-bonding state giving 
rise either to a shorter or to a longer upper part of the rhombi. Note that the ‘small’ 
and ‘larger’ rhombi are still similar to each other. We also see the hierarchical tree-like 
structure of ‘parabolas’ in the ‘even’ sector. The horizontal pairs stemming from ++ 
excitations are, however, no longer of equal length: A +; excitation costs more energy 
if added to a higher level and this energy seems numerically proportional to the 
quantum number k’ of the level. 

In figure 2 ( a )  the external ‘parabola’ is given by values 0.82, 5.0,9.7 and 16.6 which 
can be fitted by ( k+5)e+(4)e  giving the sequence 0.7, 4.7, 9.7 and 16.0, while if one 
tries a fit of the form (k+f)’+(;)’ one gets at best 0.37, 3.7, 9.7 and 18.3. Similarly 
the minima of the ‘parabolas’ can be fitted better by k’’ than by k” ( k ’  odd) and the 
same applies also to the sequence of starting points of new generations of rhombi. So 
it seems that one can rather well quantitatively reproduce some of the low-lying states 
of the spectrum if one replaces the quadratic dependence on k that one has in the 
TXY model by a ke  dependence, in spite of the fact that the g = 1 model is not a 
free-particle theory. 

Note that this k e  law was obtained taking the limit N+co and k fixed. The 
continuum dispersion relation E ( P ) ,  however, is obtained by the limit N + CO, q + 0 
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and P = 2 r q /  N fixed. We have tried for a relation E - Pa (in a Brillouin zone) but 
the still relatively few lattices do not really permit to distinguish between cy = 2  and 
(Y = 8, although the available data favour a = 2 in the region 0.3 s q /  N 

Finally, let us make a comment on the ground state energy. From (3) we see that 
E,, only contains a (non-universal) bulk term bN and that in particular the universal 
finite-size scaling amplitude f in e, = bN +fN-" vanishes for both g = 0 with x = 2 and 
g = 1 with x = 8. (The bulk term bN could obviously be made to vanish by a simple 
redefinition of the diagonal part of the Hamiltonian (l).) In this context it is perhaps 
also worth recalling that the ground state energy of the effective Hamiltonian describing 
model A of critical dynamics vanishes similarly [30]. This finding should be compared 
with conformally invariant systems, where the corresponding universal amplitude is 
related to the central charge of the spectrum-generating Virasoro algebra [2]. Further 
studies on directed systems will hopefully explain this observation. 

0.5. 

5. Conclusion 

We have analysed for the first time the spectra of directed problems. For the two 
models that we studied, i.e. directed percolation and the transverse XY model we 
found that the low-lying part of the spectrum has a self-similar structure in energy- 
momentum space. The spectrum of the exactly solvable TXY model follows in the 
finite-size scaling limit a dispersion relation k2 and the numerical evidence for directed 
percolation supports a relation k'. By analogy with the picture of elementary excitations 
(particles) that build up the spectrum of the TXY model we propose that the spectrum 
of directed percolation is the result of interacting particles. We hope that future 
theoretical work on directed models might lead to an explanation of our proposed 
picture. For this purpose also further empirical evidence from other directed models 
would be useful. 

As a by-product of our numerical work we obtained new estimates for the critical 
exponents and the location of the critical point and reconfirmed that the Hamiltonian 
formulation of the Reggeon field theory is in the same universality class as directed 
percolation. 
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